Q1. This question is about some isomers of C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>

(a) Compound **H** is a cyclic ester that can be prepared as shown.

On the structure of **H**, two of the carbon atoms are labelled.

Н

(i) Name and outline a mechanism for this reaction.

Use **Table C** on the Data Sheet to give the <sup>13</sup>C n.m.r. δ value for the carbon atom labelled **a** and the  $\delta$  value for the carbon atom labelled **b**.

| (ii) | HOCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> COCl can also react to form a polyester in a mechanism similar to that in part (i).               |     |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|      | Draw the repeating unit of the polyester and name the type of polymerisation involved.                                                              |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     | (0) |  |  |  |  |
|      |                                                                                                                                                     | (2) |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      | te how you could distinguish between compounds ${\bf J}$ and ${\bf K}$ by a simple test-tube ction.                                                 |     |  |  |  |  |
|      | te how you could distinguish between ${\bf J}$ and ${\bf K}$ by giving the number of peaks in ${}^{\rm t}{\bf H}$ n.m.r. spectrum of each compound. |     |  |  |  |  |
| Cł   | $H_3-C-CH_2-C-CH_3$ $CH_3-C-CH_2-CH_2-C$ $H_0$ $CH_3-C-CH_2-CH_2-CH_2-C$                                                                            |     |  |  |  |  |
|      | ö ö ö                                                                                                                                               |     |  |  |  |  |
|      | J K                                                                                                                                                 |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     |     |  |  |  |  |
|      |                                                                                                                                                     | (5) |  |  |  |  |

(b)

| (c)          | Draw the structure of each of the following isomers of C₅H₅O₂<br>Label each structure you draw with the correct letter <b>L</b> , <b>M</b> , <b>N</b> , <b>P</b> or <b>Q</b> .                                                                                                                                                                                                                                                                                                                         |   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | L is methyl 2-methylpropenoate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|              | <b>M</b> is an ester that shows E-Z stereoisomerism.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|              | ${f N}$ is a carboxylic acid with a branched carbon chain and does ${f not}$ show stereoisomerism.                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|              | <b>P</b> is an optically active carboxylic acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|              | <b>Q</b> is a cyclic compound that contains a ketone group and has only two peaks in its <sup>1</sup> H n.m.r. spectrum.                                                                                                                                                                                                                                                                                                                                                                               |   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|              | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|              | i i Atai 14 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|              | (Total 19 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , |
|              | (Total 13 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , |
|              | (Total 13 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , |
|              | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.                                                                                                                                                                                                                                                                                                                                                | , |
| tech         | the molecular formula of a compound is known, spectroscopic and other analytical                                                                                                                                                                                                                                                                                                                                                                                                                       | , |
| tech         | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.                                                                                                                                                                                                                                                                                                                                                |   |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its ¹³C n.m.r. spectrum.                                                                        | , |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. | , |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. |   |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. |   |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. |   |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. |   |
| tech<br>Drav | the molecular formula of a compound is known, spectroscopic and other analytical niques can be used to distinguish between possible structural isomers.  w one possible structure for each of the compounds described in parts (a) to (d).  Compounds F and G have the molecular formula C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> and both are dinitrobenzenes.  F has two peaks in its <sup>13</sup> C n.m.r. spectrum.  G has three peaks in its <sup>13</sup> C n.m.r. spectrum. |   |

(b) Compounds  ${\bf H}$  and  ${\bf J}$  have the molecular formula  $C_{{}_{6}}H_{{}_{12}}$ . Both have only one peak in their  ${}^{1}H$  n.m.r. spectra.

|              | <b>H</b> reacts with aqueous bromine but <b>J</b> does not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|              | НЈ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| ( - <b>)</b> | Mand Language and a control of the theory of the form of the control of the contr |                        |
| (c)          | <b>K</b> and <b>L</b> are cyclic compounds with the molecular formula C <sub>6</sub> H <sub>10</sub> O. Both have four peaks in their <sup>13</sup> C n.m.r. spectra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
|              | <b>K</b> is a ketone and <b>L</b> is an aldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|              | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| (d)          | Compounds <b>M</b> and <b>N</b> have the molecular formula C <sub>6</sub> H <sub>15</sub> N. <b>M</b> is a tertiary amine with only two peaks in its ¹H n.m.r. spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
|              | <b>N</b> is a secondary amine with only three peaks in its <sup>1</sup> H n.m.r. spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|              | MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)<br>(Total 8 marks) |

| Q3.Acyl | chloric   | des and acid anhydrides are important compounds in organic synthesis.                                                                  |     |
|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| (a)     |           | utline a mechanism for the reaction of CH <sub>3</sub> CH <sub>2</sub> COCI with CH <sub>3</sub> OH and name the ganic product formed. |     |
|         | Ме        | echanism                                                                                                                               |     |
|         |           |                                                                                                                                        |     |
|         |           |                                                                                                                                        |     |
|         |           |                                                                                                                                        |     |
|         | Na        | me of organic product                                                                                                                  | (5) |
|         |           |                                                                                                                                        | (-) |
| (b)     |           | polyester was produced by reacting a diol with a diacyl chloride. The repeating it of the polymer is shown below.                      |     |
| -       | o-c-<br>0 | -CH <sub>2</sub> CH <sub>2</sub> -C-O-CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -                |     |
|         | (i)       | Name the diol used.                                                                                                                    |     |
|         |           |                                                                                                                                        | (1) |
|         |           |                                                                                                                                        | ·   |
|         | (ii)      | Draw the displayed formula of the diacyl chloride used.                                                                                |     |

(1)

(iii) A shirt was made from this polyester. A student wearing the shirt accidentally splashed aqueous sodium hydroxide on a sleeve. Holes later appeared in the sleeve where the sodium hydroxide had been.

| Name the type of reaction that occurred between the polyester and the aqueous sodium hydroxide. Explain why the aqueous sodium hydroxide reacted with the polyester. |                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Type of reaction                                                                                                                                                     |                                                                                                                  |
| Explanation                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                      |                                                                                                                  |
|                                                                                                                                                                      |                                                                                                                  |
|                                                                                                                                                                      | (3)                                                                                                              |
| Complete the following equation for the preparation of aspirin using ethanoic anhydride by writing the structural formula of the missing product.                    |                                                                                                                  |
| соон                                                                                                                                                                 |                                                                                                                  |
| aspirin                                                                                                                                                              |                                                                                                                  |
|                                                                                                                                                                      | (1)                                                                                                              |
| Suggest a name for the mechanism for the reaction in part (c)(i).                                                                                                    |                                                                                                                  |
|                                                                                                                                                                      | (1)                                                                                                              |
| Give <b>two</b> industrial advantages, other than cost, of using ethanoic anhydride rather than ethanoyl chloride in the production of aspirin.                      |                                                                                                                  |
| Advantage 1                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                      |                                                                                                                  |
|                                                                                                                                                                      |                                                                                                                  |
| Advantage 2                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                      |                                                                                                                  |
|                                                                                                                                                                      | (2)                                                                                                              |
|                                                                                                                                                                      | aqueous sodium hydroxide. Explain why the aqueous sodium hydroxide reacted with the polyester.  Type of reaction |

(d) Complete the following equation for the reaction of one molecule of benzene-1,2-dicarboxylic anhydride (phthalic anhydride) with one molecule of methanol by drawing the structural formula of the single product

phenol as shown in the following equation.

(e)

The indicator phenolphthalein is synthesised by reacting phthalic anhydride with

- (i) Name the functional group ringed in the structure of phenolphthalein.
- (ii) Deduce the number of peaks in the ¹³C n.m.r. spectrum of phenolphthalein.

  (1)
- (iii) One of the carbon atoms in the structure of phenolphthalein shown above is labelled with an asterisk (\*). Use **Table 3** on the Data Sheet to suggest a range of  $\delta$  values for the peak due to this carbon atom in the  $^{13}$ C n.m.r. spectrum of phenolphthalein.

(1)

(1)

(1)

| (f) | Phenolphthalein can be used as an indicator in some acid-alkali titrations |
|-----|----------------------------------------------------------------------------|
|     | The pH range for phenolphthalein is 8.3 – 10.0                             |

| (i) | For <b>each</b> acid.alkali combination in the table below, put a tick ( ) in the box if |
|-----|------------------------------------------------------------------------------------------|
|     | phenolphthalein could be used as an indicator.                                           |

| Acid              | Alkali              | Tick<br>box (✔) |
|-------------------|---------------------|-----------------|
| sulfuric acid     | sodium hydroxide    |                 |
| hydrochloric acid | ammonia             |                 |
| ethanoic acid     | potassium hydroxide |                 |
| nitric acid       | methylamine         |                 |

(2)

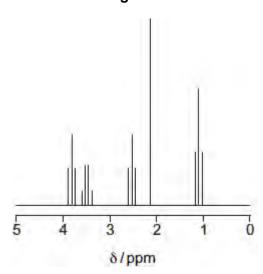
| (ii) | In a titration, nitric acid is added from a burette to a solution of sodium |              |
|------|-----------------------------------------------------------------------------|--------------|
|      | hydroxide containing a few drops of phenolphthalein indicator.              |              |
|      | Give the colour <b>change</b> at the end-point.                             |              |
|      |                                                                             |              |
|      |                                                                             | / <b>/</b> / |
|      | (T + 104 )                                                                  | (1)          |
|      | (Total 21 mark                                                              | (S)          |

- **Q4.**This question concerns isomers of  $C_6H_{12}O_2$  and how they can be distinguished using n.m.r. spectroscopy.
  - (a) The non-toxic, inert substance TMS is used as a standard in recording both <sup>1</sup>H and <sup>13</sup>C n.m.r. spectra.

| (i) | Give <b>two</b> other reasons why | TMS is used | as a standard | in recording n.m.r. |
|-----|-----------------------------------|-------------|---------------|---------------------|
|     | spectra.                          |             |               |                     |

| Reason 1 | <br> | <br> | <br> |  |
|----------|------|------|------|--|
|          |      |      |      |  |
|          |      |      |      |  |
|          |      |      |      |  |

| eason 2 |  |
|---------|--|
|         |  |
|         |  |
|         |  |


(ii) Give the structural formula of TMS.

(1)

(2)

(b) The proton n.m.r. spectrum of compound  $P(C_6H_{12}O_2)$  is represented in **Figure 1**.

Figure 1



The integration trace gave information about the five peaks as shown in Figure 2.

Figure 2

| δ / ppm           | 3.8 | 3.5 | 2.6 | 2.2 | 1.2 |
|-------------------|-----|-----|-----|-----|-----|
| Integration ratio | 2   | 2   | 2   | 3   | 3   |

(i) Use **Table 2** on the Data Sheet, **Figure 1** and **Figure 2** to deduce the structural fragment that leads to the peak at  $\delta$  2.2.

|       |                                                                                                                                                              | (1) |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii)  | Use <b>Table 2</b> on the Data Sheet, <b>Figure 1</b> and <b>Figure 2</b> to deduce the structural fragment that leads to the peaks at $\delta$ 3.5 and 1.2. |     |
|       |                                                                                                                                                              | (1) |
| (iii) | Use <b>Table 2</b> on the Data Sheet, <b>Figure 1</b> and <b>Figure 2</b> to deduce the structural fragment that leads to the peaks at $\delta$ 3.8 and 2.6. |     |
|       |                                                                                                                                                              | (1) |
| (iv)  | Deduce the structure of <b>P</b> .                                                                                                                           |     |
|       |                                                                                                                                                              | (1) |
| The   | se questions are about different isomers of <b>P</b> (C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ).                                                       |     |
| (i)   | Draw the structures of the two esters that both have only two peaks in their proton n.m.r. spectra. These peaks both have an integration ratio of 3:1.       |     |
|       | Ester 1                                                                                                                                                      |     |
|       |                                                                                                                                                              |     |

(c)

| (2) |
|-----|
| (4) |

(ii) Draw the structure of an optically active carboxylic acid with five peaks in its <sup>13</sup>C n.m.r. spectrum.

(1)

(iii) Draw the structure of a cyclic compound that has only two peaks in its <sup>13</sup>C n.m.r. spectrum and has no absorption for C = O in its infrared spectrum.

(1) (Total 11 marks)